📢 Gate廣場 #MBG任务挑战# 發帖贏大獎活動火熱開啓!
想要瓜分1,000枚MBG?現在就來參與,展示你的洞察與實操,成爲MBG推廣達人!
💰️ 本期將評選出20位優質發帖用戶,每人可輕鬆獲得50枚MBG!
如何參與:
1️⃣ 調研MBG項目
對MBG的基本面、社區治理、發展目標、代幣經濟模型等方面進行研究,分享你對項目的深度研究。
2️⃣ 參與並分享真實體驗
參與MBG相關活動(包括CandyDrop、Launchpool或現貨交易),並曬出你的參與截圖、收益圖或實用教程。可以是收益展示、簡明易懂的新手攻略、小竅門,也可以是現貨行情點位分析,內容詳實優先。
3️⃣ 鼓勵帶新互動
如果你的帖子吸引到他人參與活動,或者有好友評論“已參與/已交易”,將大幅提升你的獲獎概率!
MBG熱門活動(帖文需附下列活動連結):
Gate第287期Launchpool:MBG — 質押ETH、MBG即可免費瓜分112,500 MBG,每小時領取獎勵!參與攻略見公告:https://www.gate.com/announcements/article/46230
Gate CandyDrop第55期:CandyDrop x MBG — 通過首次交易、交易MBG、邀請好友註冊交易即可分187,500 MBG!參與攻略見公告:https://www.gate.com/announcements
冷思考: AI和Crypto賽道的差異在哪裏?
作者:Haotian
大家都說以太坊Rollup-Centric戰略貌似失敗了?並深惡痛疾這種L1-L2-L3的套娃遊戲,但有意思的是,過去一年AI賽道的發展也走了一遍L1—L2—L3的快速演化。對比下,究竟問題出在哪裏?
1)AI的分層邏輯是,每層都在解決上層無法解決的核心問題。
比方說,L1的LLMs解決了語言理解和生成的基礎能力,但邏輯推理和數學計算確實是硬傷;於是乎到了L2,推理模型專門攻克這個短板,DeepSeek R1能做復雜數學題和代碼調試,直接補齊了LLMs的認知盲區;完成這些鋪墊之後,L3的AI Agent就很自然地把前兩層能力整合起來,讓AI從被動回答變成主動執行,能自己規劃任務、調用工具、處理復雜workflow。
你看,這種分層是“能力遞進”:L1打地基,L2補短板,L3做整合。每一層都在前一層基礎上產生質的飛躍,用戶能明顯感受到AI變得更聰明、更有用。
2)Crypto的分層邏輯是,每層都在爲前一層的問題打補丁,卻不幸帶來了全新更大的問題。
比如,L1公鏈性能不夠,很自然想到用layer2的擴容方案,但內卷了一波layer2 Infra潮之後貌似Gas低了、TPS累加提升了、但流動性卻分散了,生態應用還持續匱乏,使得過多的layer2 infra反倒成了大問題。於是乎開始做layer3垂直應用鏈,但應用鏈卻各自爲政,無法享受infra通用鏈的生態協同效應,用戶體驗反而更加碎片化了。
這樣一來,這種分層就成了“問題轉移”:L1有瓶頸,L2打補丁,L3混亂且分散。每一層都只是把問題從一個地方轉移到另一個地方,仿佛所有的解決方案都只是爲了“發幣”這一件事展開。
話到此,大家都應該明白造成這種悖論的症結是啥了:AI分層是被技術競爭驅動的,OpenAI、Anthropic、DeepSeek都在拼命卷模型能力;Crypto分層是被Tokenomic綁架的,每個L2的核心KPI都是TVL和Token價格。
So,本質上一個在解決技術難題,一個在包裝金融產品?孰是孰非可能也沒有答案,見仁見智。
當然,這個抽象的類比也沒那麼絕對,只是覺得二者的發展脈絡對比下非常有意思,周末做個思維按摩。